Modeling exchange rates: smooth transitions, neural networks, and linear models

نویسندگان

  • Marcelo C. Medeiros
  • Alvaro Veiga
  • Carlos Eduardo Pedreira
چکیده

The goal of this paper is to test and model nonlinearities in several monthly exchange rates time series. We apply two different nonlinear alternatives, namely: the artificial neural-network time series model estimated with Bayesian regularization; and a flexible smooth transition specification, called the neuro-coefficient smooth transition autoregression. The linearity test rejects the null hypothesis of linearity in 10 out of 14 series. We compare, using different measures, the forecasting performance of the nonlinear specifications with the linear autoregression and the random walk models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The relationship between Neural Networks and DEA-R (Case Study: Companies Stock Exchange)

   Evaluate the performance of companies on the Stock Exchange using non-parametric methods is very important. DEA and DEA-R with the strategies for piecewise linear frontier production function and use of available data, assess the stock company. In this study, using a neural network algorithm DEA and DEA-R is suggested to classify the first companies in the stock exchange; Secondly, using the...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)

The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series  predicted by using...

متن کامل

A Nonlinear Model of Economic Data Related to the German Automobile Industry

Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. But it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. Such evidence appeared in the German automobile industry as a consequence of the financial crisis in 2008/09, which influenced exchange rates and a...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2001